Epigenetic regulation of BMP7 in the regenerative response to ischemia.

نویسندگان

  • Takeshi Marumo
  • Keiichi Hishikawa
  • Masahiro Yoshikawa
  • Toshiro Fujita
چکیده

Kidneys damaged by ischemia have the potential to regenerate through a mechanism involving intrarenal induction of protective factors, including bone morphogenetic protein-7 (BMP7). Epigenetic changes, such as alterations in histone modifications, have also been shown to play a role in various pathologic conditions, but their involvement in ischemic injury and regeneration remains unknown. This study investigated whether changes in histone acetylation, regulated by histone acetyltransferase and histone deacetylase (HDAC), are induced by renal ischemia and involved in the regenerative response. Ischemia/reperfusion of the mouse kidney induced a transient decrease in histone acetylation in proximal tubular cells, likely as a result of a decrease in histone acetyltransferase activity as suggested by experiments with energy-depleted renal epithelial cells in culture. During recovery after transient energy depletion in epithelial cells, the HDAC isozyme HDAC5 was selectively downregulated in parallel with the return of acetylated histone. Knockdown of HDAC5 by RNAi significantly increased histone acetylation and BMP7 expression. BMP7 induction and HDAC5 downregulation in the recovery phase were also observed in proximal tubular cells in vivo after transient ischemia. These data indicate that ischemia induces dynamic epigenetic changes involving HDAC5 downregulation, which contributes to histone re-acetylation and BMP7 induction in the recovery phase. This highlights HDAC5 as a modulator of the regenerative response after ischemia and suggests HDAC5 inhibition may be a therapeutic strategy to enhance BMP7 expression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Epigenetic Regulation of Blinatumomab Gene Expression: Tumor Cell-dependent T cell Response against Lymphoma Cells and Cytotoxic Activity

Conventional treatment for cancer such as surgical resection and chemotherapy can cause damage in cases with advanced cancers. Moreover, the identification of tumor-specific targets has great importance in T-cell therapies. For decades, T cell activity has been stimulated to improve anti-tumor activity. Bispecific antibodies have attracted strong interest from pharmaceutical companies, for thei...

متن کامل

P 110: Evaluating the Role of Histone Hyper Acetylation in Induction of Neuroinflammation

Microglia is the effector cell of the innate immune system in central nervous system (CNS). These cells mediate inflammatory responses in injuries. Besides external factors, microglial function is also controlled by internal factors, including epigenetic regulations. Mechanisms of epigenetic regulation mainly consist of DNA methylation, histone modifications and use of non-coding RNAs. Recent s...

متن کامل

BMP7 promotes proliferation of nephron progenitor cells via a JNK-dependent mechanism.

The iterative formation of nephrons during embryonic development relies on continual replenishment of progenitor cells throughout nephrogenesis. Defining molecular mechanisms that maintain and regulate this progenitor pool is essential to understanding nephrogenesis in developmental and regenerative contexts. Maintenance of nephron progenitors is absolutely dependent on BMP7 signaling, and Bmp7...

متن کامل

O-31: Epigenetic Aberration of HOXA10 Gene in Human Endometrium throughout The Menstrual Cycle in Endometriosis

Background: Epigenetic aberration such as DNA methylation and histone modifications appear to be involved in various diseases such as Endometriosis. Here, we investigated the epigenetic regulation of HOXA10 promoter, as a crucial gene, responsible for uterine organogenesis, functional endometrial differentiation and endometrial receptivity, and its correlation with mRNA expression of this gene ...

متن کامل

HDAC Inhibitors and Heat Shock Proteins (Hsps)

Epigenetic alterations, including DNA acetylation, hypermethylation and hypomethylation, and the associated transcriptional changes of the affected genes are central to the evolution and progression of various human cancers, including pancreatic cancer. Cancer-associated epigenetic alterations are attractive therapeutic targets because such epigenetic alterations, unlike genetic changes, are po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Society of Nephrology : JASN

دوره 19 7  شماره 

صفحات  -

تاریخ انتشار 2008